Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Am J Physiol Heart Circ Physiol ; 323(6): H1206-H1211, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2108360

ABSTRACT

Emerging evidence suggests that COVID-19 may affect cardiac autonomic function; however, the limited findings in young adults with COVID-19 have been equivocal. Notably, symptomology and time since diagnosis appear to influence vascular health following COVID-19, but this has not been explored in the context of cardiac autonomic regulation. Therefore, we hypothesized that young adults who had persistent symptoms following COVID-19 would have lower heart rate variability (HRV) and cardiac baroreflex sensitivity (BRS) compared with those who had COVID-19 but were asymptomatic at testing and controls who never had COVID-19. Furthermore, we hypothesized that there would be relationships between cardiac autonomic function measures and time since diagnosis. We studied 27 adults who had COVID-19 and were either asymptomatic (ASYM; n = 15, 6 females); 21 ± 4 yr; 8.4 ± 4.0 wk from diagnosis) or symptomatic (SYM; n = 12, 9 females); 24 ± 3 yr; 12.3 ± 6.2 wk from diagnosis) at testing, and 20 adults who reported never having COVID-19 (24 ± 4 yr, 11 females). Heart rate and beat-to-beat blood pressure were continuously recorded during 5 min of rest to assess HRV and cardiac BRS. HRV [root mean square of successive differences between normal heartbeats (RMSSD); control, 73 ± 50 ms; ASYM, 71 ± 47 ms; and SYM, 84 ± 45 ms; P = 0.774] and cardiac BRS (overall gain; control, 22.3 ± 10.1 ms/mmHg; ASYM, 22.7 ± 12.2 ms/mmHg; and SYM, 24.3 ± 10.8 ms/mmHg; P = 0.871) were not different between groups. However, we found correlations with time since diagnosis for HRV (e.g., RMSSD, r = 0.460, P = 0.016) and cardiac BRS (overall gain, r = 0.470, P = 0.014). These data suggest a transient impact of COVID-19 on cardiac autonomic function that appears mild and unrelated to persistent symptoms in young adults.NEW & NOTEWORTHY The potential role of persistent COVID-19 symptoms on cardiac autonomic function in young adults was investigated. We observed no differences in heart rate variability or cardiac baroreflex sensitivity between controls who never had COVID-19 and those who had COVID-19, regardless of symptomology. However, there were significant relationships between measures of cardiac autonomic function and time since diagnosis, suggesting that COVID-19-related changes in cardiac autonomic function are transient in young, otherwise healthy adults.


Subject(s)
COVID-19 , Female , Young Adult , Humans , Autonomic Nervous System , Baroreflex/physiology , Heart Rate/physiology , Heart , Blood Pressure/physiology
2.
Am J Physiol Heart Circ Physiol ; 323(1): H59-H64, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-1861685

ABSTRACT

We and others have previously shown that COVID-19 results in vascular and autonomic impairments in young adults. However, the newest variant of COVID-19 (Omicron) appears to have less severe complications. Therefore, we investigated whether recent breakthrough infection with COVID-19 during the Omicron wave impacts cardiovascular health in young adults. We hypothesized that measures of vascular health and indices of cardiac autonomic function would be impaired in those who had the Omicron variant of COVID-19 when compared with controls who never had COVID-19. We studied 23 vaccinated adults who had COVID-19 after December 25, 2021 (Omicron; age, 23 ± 3 yr; 14 females) within 6 wk of diagnosis compared with 13 vaccinated adults who never had COVID-19 (age, 26 ± 4 yr; 7 females). Macro- and microvascular function were assessed using flow-mediated dilation (FMD) and reactive hyperemia, respectively. Arterial stiffness was determined as carotid-femoral pulse wave velocity (cfPWV) and augmentation index (AIx). Heart rate (HR) variability and cardiac baroreflex sensitivity (BRS) were assessed as indices of cardiac autonomic function. FMD was not different between control (5.9 ± 2.8%) and Omicron (6.1 ± 2.3%; P = 0.544). Similarly, reactive hyperemia (P = 0.884) and arterial stiffness were not different between groups (e.g., cfPWV; control, 5.9 ± 0.6 m/s and Omicron, 5.7 ± 0.8 m/s; P = 0.367). Finally, measures of HR variability and cardiac BRS were not different between groups (all, P > 0.05). Collectively, these data suggest preserved vascular health and cardiac autonomic function in young, otherwise healthy adults who had breakthrough cases of COVID-19 during the Omicron wave.NEW & NOTEWORTHY We show for the first time that breakthrough cases of COVID-19 during the Omicron wave does not impact vascular health and cardiac autonomic function in young adults. These are promising results considering earlier research showing impaired vascular and autonomic function following previous variants of COVID-19. Collectively, these data demonstrate that the recent Omicron variant is not detrimental to cardiovascular health in young, otherwise healthy, vaccinated adults.


Subject(s)
COVID-19 , Hyperemia , Vascular Stiffness , Adult , Female , Humans , Pulse Wave Analysis , SARS-CoV-2 , Vascular Stiffness/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL